AUTOMATED
TESTING OF
DASHBOARDS

l °
°
O
Making Trusted Decisions, Together

ABSTRACT O

Companies make business-critical decisions every day based on data from their business
intelligence systems. It is therefore essential that Business Intelligence (Bl) reports display correct
data in an efficient way that is interactive and easy to understand for business users. Bl reports
are usually validated manually, but there are other efficient ways of conducting testing which
are more reliable and can reduce testing time. In this whitepaper, we explore alternatives to
manual testing of Tableau dashboards and describe how software developers have been relying
on automated testing via Continuous Integration and techniques like Test-Driven Development
to improve software stability and reduce maintenance costs. We will explore how Wiiisdom Ops
supports these practices for Tableau.

Business intelligence dashboards constantly evolve as business and reporting needs change.
Suchchangescan potentiallyalterexisting unrelated functionalityand cause unintended reporting
errors, which is why testing dashboard deployments is essential. In large organizations, it is not
uncommon to have a high numlber of changes committed on any given day to a dashboard or a
number of dashboards. These changes can only be effectively validated with automated testing.
We can also use automated testing to ensure that our reports display correct data and, that our
data refresh processes and manual modifications are executed correctly either by comparing the
results with pre-set values or referencing data in the underlying database. Performing such test
tasks in an automated fashion on a Continuous Integration server can greatly

reduce costs and speed up delivery.

O

BACKGROUND

Modern software development practices encourage making testing a fundamental part of the
project. If a software project does not have reasonable test coverage it is considered as

“legacy code’™

any change to such a project is a potential risk and makes maintenance harder and more costly.

There are a number of software test categories but some of the most commonly used ones are:

® Unit
® Fynctional
® Performance

Each software test category provides different values: in unit testing, it is possible to write simple
and quick tests and validate low-level logic, while functional tests are higher level, take longer
to write but give more confidence in the overall correctness of the system. Performance tests
can help identify slowdowns and bottlenecks introduced by changes. It is common to use a
combination of several test types in a software project to get optimal results.

Ideally, we should be able to use a similar approach and perform different kinds of tests on our
Tableau dashboards to gain complete confidence in our changes before promoting the new
version to our clients.

Drawing parallels between Bl dashboard and software testing can be helpful to understand
important similarities, but there is a major difference with business intelligence systems: software
testing tools and frameworks are typically designed for traditional programming languages and
are not suitable for Bl projects. Testing Business Intelligence applications is different from testing
traditional transactional applications, as it requires a data-centric testing approach and you need
to work with third-party Bl tools, resulting in limited alternatives for applicable testing tools. In
addition, the volume, variety, and complexity of the data make it difficult to create robust test
cases, and specialized skills are required to execute the data validation and verification processes.

Despite limited testing options with Tableau, we can still implement a full test suite to validate the
accuracy and performance of our dashboards.

We can implement some of the following test types in our Bl testing strategy:
e Regression to verify new changes don't impact existing functionality.

® Functional to ensure that the delivered changes are in line with requirements.

® Cross - Environment to compare different Tableau environments
(i.e. sites or servers) to make sure changes can be safely deployed.

® Performance to make sure no performance regressions are introduced in our changes.

TESTING OPTIONS O

TESTING TABLEAU DASHBOARDS

Testing is an integral and very important part of most areas of software development.
However in Bl, it is not yet widespread, despite the fact that Bl developers not only visualize
data but they also make a lot of data transformations, implementing various business
logic into the visualization layer, blending data from multiple sources, etc. This simply
results in a very high risk of potentially showing data incorrectly.

Bl professionals who recognize the need for testing their Bl projects can implement one
of the following approaches, or a combination of them.

Manual testing. Compile a list of test cases that need to be verified after every change.
These can be maintained in a simple spreadsheet and updated with new test cases
as dashboard development progresses. As this kind of testing does not require any
additional software products it is the simplest one to implement. However, it is the
slowest and most expensive one to maintain.

Automated testing via Selenium. Since Tableau Server can be accessed with a web
browser, automation can be built with a headless browser using Selenium WebDriver.
This means we can automate manual test executions, but it does take a considerable
investment to build out the initial automation framework. Adding and maintaining
tests requires software development skills depending on how much abstraction our
framework does. It is also not possible with Selenium to test data or Tableau-specific
functionalities.

Automated testing with specialized Tableau testing tools, like

Wiiisdom Ops. Wiiisdom Ops is a Tableau testing framework that uses headless brow-
ser automation with an easy-to-use user interface to set-up and maintains test cases.
Wiiisdom Ops allows users to describe dashboard interactions and user journeys in
their test cases, and execute the tests using the Ul or through the command-line inter-
face. This is so that tests can be driven from continuous integration servers like Jenkins.

At present, manual testing is by far the most prevalent. Bl analysts usually implement and follow a
manual testing process. To follow a manual testing routine, companies are reliant on QA resources,
resulting in an increased headcount. Manual testing is also prone to human errors and thus not
the most efficient process.

Selenium tests are designed for web applications. However, they cannot deal with the challenges
of a data-centric testing approach, where data can be changing at frequent intervals. Writing
and maintaining test cases in Selenium is also a lengthy process, creating overhead and requiring
skills data analysts and Bl developers do not necessarily have.

Specialized Tableau testing tools can efficiently deal with the challenges of changing data, and
specific features are designed to provide interactivity for Tableau users.

THE ADVANTAGE

Wiiisdom Ops is a testing tool designed for Bl projects to cover testing requirements, including
functional, regression, and performance testing, and to implement test-driven development for
Tableau dashboards. Wiiisdom Ops offers a versatile and flexible test framework for Tableau that
can reduce the high costs of repetitive manual testing by shortening your Bl development cycle
and increasing the reliability of your Bl dashboards.

using Wiiisdom Ops Designer, analysts can quickly put together a
comprehensive test plan for their dashboards, including functional, regression,
cross-environment, and performance testing. Tests can be executed directly
within the tool.

as the test cases are described in JSON file format, they can be easily kept in
source control systems. Wiiisdom Ops Designer integrates with Git so users
don't need to leave the tool to clone or upload tests.

asreportsevolve, new changescan breakexisting functionality. The Wiiisdom Ops
command-line interface tool can be easily integrated with your organization's
continuous integration server, and every dashboard change can trigger a re-run
of the entire test suite against the latest dashboard version. This ensures that
the changes do not cause problems before the dashboard is published to the
live environment.

find issues at the earliest possible phase when developing new features.

automatically deploy changes after successful test runs to improve productivity.

run the test suite on a regular basis to ensure the Tableau environment is always
in a healthy state.

ADVANTAGES OF WIIISDOM OPS IN-HOUSE TEST AUTOMATIONS:

In order to be able to use the Wiiisdom Ops tool, users do not need special skills other than
working knowledge of Tableau. Users can quickly learn how to use Wiiisdom Ops Designer and
startimplementing tests. In-house test automation solutions without a simplified user experience
usually require training and continuous assistance from the software engineering group.

Cost of ownership: implementing a custom automation solution for Tableau is non- trivial. Taking
Seleniumasan exampletodrive testautomation,even a minimal solution that can be used by non-
technical users will likely require hundreds of man-hours of development time and continuous
maintenance to keep up with changes introduced by new Tableau releases. In contrast, the total
cost of ownership of a ready-made solution like Wiiisdom Ops will be much less and is practically
maintenance-free.

TDD AND AGILE

TEST-DRIVEN DEVELOPMENT

In most areas of software development, adopting Cl and other agile methodologies have changed
the way people test. Development teams are required to do more testing, faster and more often.
Testing is done earlier in the development lifecycle and the focus is on automated testing as
developers try to move away from manual testing.

REFACTOR

<

Test-Driven Development (TDD) as a concept is widely used in most areas of software
development. Software developers using TDD start with writing test cases, based on what
the software or piece of code is expected to do, then write the code, so that the test passes.
They then keep repeating these steps on a regular basis.

This concept enables developers to find issues at the earliest possible phase when
developing new features, so they will know of any issues before merging the changes into
the existing codebase. A large number of studies prove that writing tests are crucial when
developing software, and will result in a decrease in production issues and of course less
headache with fixing bugs.

In Business Intelligence, test-driven development can be implemented with Wiiisdom
Ops, as this tool is designed for Bl applications and is able to test dashboards with
changing data, complex calculation logic, and interactive fields. Wiiisdom Ops is using
the Tableau JS/REST APIs and further internal commmunication methods to interact with
the visualizations where web testing framneworks are not efficient. Moreover, it comes with
built-in data comparison tasks that are mandatory to validate the figures shown on the
dashboard.

TN
N
R\

TDD AND AGILE

Agile software development is an approach whereby software solutions evolve through
continuous collaboration between teams. It is widespread in modern software development as

changes in requirements can be dealt with more efficiently, and results in delivering solutions
to end-users faster and more accurately.

With Wiiisdom Ops, users can evolve their Bl projects into an agile process. Automated testing
can be implemented at all stages of dashboard development and used by various teams,

starting with Bl developers or data analysts developing functional tests when developing the
dashboards themselves. These can be run whenever a change is committed to a dashboard
to make sure existing functionality is preserved. Regression tests can be run by QA analysts

to keep track of unexpected changes to dashboards. Finally, fully tested dashboards can be
deployed automatically to the production environment.

O

'3-
famn
—
RELEASE PRODUCTION Bl PLATFORM

Deploy fully tested dashboards
automatically to Production with
Continuous Delivery

Integrate newly developed dashoards or
features regularly into a shared repository

and verify with an automated build to
\"ERAT'ON identify any potential issues affecting
your dashboards immediately.

</> Q -
] Performance / Stress Testing Code and tests
o= Testing Bl Software Upgrades AGILE BI o live together ™
Automated deployment WITH ersion Control Syste
/Continuous Delivery W
ISDOM
opS

Bl Developers

Integrate your tests with a Cl pipeline in minutes and let it
run all the testing jobs for you after every new commits or
whenever you want to.

With Wiiisdom Ops you can be on top of your data and ensure user
requirements are met at all times. Detect issues immediately and
locate them more easily.

</> Q
== Regression Testing
o= Integration Testing
Automating previously
manual tests

</> @
= e Regression Testing

~ Integration Testing
NOTIFYING

Test Driven Development

FAILING TEST PASSING TEST

INTEGRATION WITH COMPANY STANDARD SOFTWARE DEVELOPMENT TOOLS

ARCHITECTURE O

Tests are created in the User Interface, Wiiisdom Ops Designer. Wiiisdom Ops Designer
generates a JSON file that includes the test properties necessary for the Command Line
Interface to run the test cases.

To set up test cases, i.e. creating snapshots from Tableau dashboards containing metadata,
Wiiisdom Ops Designer is using a web driver.

Tests are run by the Command Line Interface. Communication with Tableau is done by using
a combination of REST API, Javascript API, Tabcmd, and web interactions.

W!HISDOM
opPS

WIIISDOM OPS DESIGNER - USER INTERFACE EXTERNAL
TOOLS

Webdriver JSON) VERSION CONTROL
(Chromedriver) Test Plan Generator REPOSITORY

TQEBRI-VEEARU TEST RUNNER - COMMAND LINE INTERFACE

+4¢-’+ MAIN TESTING COMPONENTS e
¥
t+ableau —

Functional Test || Regression | Performance Test
= . m—
Rest
a COMMUNICATION INTEGRATIONS
EB

Wi
Interactions

TDD AND AGILE

There are four testing modules within Wiiisdom Ops:
functional, regression, cross-environment, and performance testing.

is designed to test different components of Tableau
dashboards, such as filters, parameters, or the layout. Users can validate
data by a number of criteria. Data can be tested against expected results,
based on user- defined rules using flexible formulas. Equally, data displayed
on Tableau dashboards can be tested directly against the content of the
underlying data source at the moment of running the test case. Users can
simulate user journeys and test every step of these journeys in Wiiisdom Ops.
Functional testing is highly modular and flexible.

enables users to compare the actual status of a Tableau
dashboard to a baseline of the same Tableau dashboard taken earlier from
Tableau Server to verify unexpected changes. Any future test runs will be
compared to this baseline.

enables users to compare the same dashboard
on two different Tableau environments at the same time.

drives load to your Tableau server and assesses
response times based on SLA requirements. You can work with multiple
concurrent users and dashboards. Performance testing in Wiiisdom Ops is
based on the Apex score, which is commonly used for web applications.

After every test run, a report which gives an overview of the test case and a detailed illustration
for any failures is generated. This enables users to easily identify and fix issues before they get
escalated or cause bigger problems down the line.

O

e o o

O

FUNCTIONAL TESTING

Functional Testing in Wiiisdom Ops is designed to simulate user journeys on Tableau
dashboards. It offers options to test dashboard elements, such as filters and parameters, to
simulate user clicks, and more importantly to test the underlying data.

Functional testing is very flexible. Every functional test in Wiiisdom Ops is made up of a
series of tasks that will be run by the Wiiisdom Ojps test runner one after the other. You
can simulate user interactions and describe complete user journeys with Functional testing,
such as setting and asserting filters and parameters, or user clicks.

You can also test your underlying data based on user-defined rules against an expected data
set or query your underlying data source with an SQL command, and compare the content
of your database to the data displayed on your Tableau server in real-time. Functional testing
offers you the opportunity to design and implement a flexible and comprehensive test plan
to ensure the functionality of your Tableau Dashboards is preserved at all times.

TASKS IN FUNCTIONAL TESTING

In Wiiisdom Ops at present, the following tasks are available within Functional Testing:

Logs in to Tableau Server

N Y
yA

Refreshes Data Extracts
based on data source

7

Validates Tableau
parameters

10

Compares values from the
underlying database,
queried by an SQL command,
to the data on the Tableau
worksheet/ dashboard

p

Opens a Tableau
Visualization

5

Loads data from a CSV file
into a database table

8

Downloads and compares
the underlying dataon a

worksheet to an expected
result defined by the user

11

Validates data displayed
on Tableau Server to
rules defined by the user

3

Publishes a Tableau file to
Tableau Server (twb, twbx,
tds, tdsx)

6

Validates Tableau filters
(separate List, Date, and Date
range options available)

9

Downloads and compares
the layout in a picture format
to an expected result
defined by the user

12

Verifies the existence of a
filter and compares
the value of a filter to
an expected result

FUNCTIONAL TESTING

13 14 15

ASSERT PARAMETER SELECT MARKS DRIVE BROWSER
EQUALS Selects marks on your Run custom web driver
Verifies the existence of a Tableau visualization commands based on
parameter and compares the to simulate clicks/ user individual requirements, i.e.
value of a parameter to an interactions when using SAML SSO
expected result

16 17

SWITCH TAB RUN COMMAND
Switches between worksheets Gives additional flexibility
within a Tableau workbook to run a command in the
command-line interface.

The above testing tasks can be combined in a sequence to describe
test cases. Please see below an example for Functional testing.

1 | i - Test Mame: . Ammert_SOL_Ecunl Description psert wfl e
= :k Functional Test m

I Tasks Data [Resources w Image (Res ey @ Report
Task List Tash Properties O Tk ¢ Doxrmentaticr
Basic v twget-dh v
Task Name* Assert SQU Equais
Login to Tablesu
—— (a— e
E Open v = - - L = e
s re -
i St Porameter sque m
-« Assert Filter Equais

o Win Scheduler A Contab © Jenkin

Validating underlying data with Assert SQL Equals task

REGRESSION TESTING O

In regression testing, users can compare a Tableau dashboard to a baseline taken earlier to check
for regression over time. Users take an initial baseline of the dashboard they wish to test.

The baseline contains all metadata such as worksheets, data, layout, filters, and parameters
available on the dashboard.

Any future test runs will be compared to this baseline.

When a regression test is run, Wiiisdom Ops compares the actual content of your Tableau server
to the baseline taken earlier.

If the baseline and the actual dashboard are the same, the test passes. If there is a difference, the
test fails. To update the Baseline, tests can be re-based. Following a re-base, the baseline will be
updated and any test runs will compare metadata to the updated baseline.

N l I S D o M Regression Test

...

Test Preparation Test Runtime

Collecting viz metadata,
components, data, layout, etc.

]
1
]
:
] I
Take Initial (Re)set Baseline Run Regression c:ornpm'e to Same as
Baseline for Test Test Basellne baseline?
L]
1
Ll
1
i
L]
Ll
1
]
L]
]
L]
1
Ll
L]
I
1
]
L
L]

basis, i.e. nighly,
weekly, etc.

Take New
Baseline

Runs on regular
Actual Viz on
Tableau Server

No - Failed

Fix and Resolve
Differences

l»l»

..

(]
Flow diagram of Regression Testing

REGRESSION TESTING

Wiiisdom Ops also gives flexibility for users to determine what to include in \\

their Regression test cases. For instance, if data is changing on a regular basis,
users can exclude data testing in regression, and focus on the structure of the
workbooks and elements such as filters and parameters.

: 2 : Test Na 11 Begresmon test Omscript regressan teat
== Regression Test e _— m
BTsks @ Reports
Task List Task Properties 0 task Ordiew [
Regression Test @
Basic v mage v
= Regression Test

Task Name* Regression
Tableau Vie URL® {{TABLEAL URL)NY{{TASLEAL SITE}}/views/Educationand innovationy Dashboard m
Refresh data on open

Use formatted values
e, CATMranss IOGICAl Wlues Wil D LS WIOUE vy Fnmanng
Chech worksheets exist
Check columns - Summary export
Check columns - Full export Mo colecad
Check data - Summary export

Check image

Chack fifters axist

m @ Ciear Conscle I‘\.l MW Scheduler A\ Crontsb @ Jenking

Regression testing task properties

CROSS-ENVIRONMENT TESTING

With Cross-Environment testing, users can compare the same dashboard on two different
Tableau environments at the same time. These will be the Source and Target Environments
on Tableau.

For instance, a dashboard on a dev server can be compared to the same dashboard already
deployed on the prod server. Alternatively, when conducting a Tableau Server upgrade you
have the old and the new server running in parallel -- this means you can automatically
compare the dashboards on those servers to accelerate pre-upgrade testing.

When the test is run, Wiiisdom Ops takes a snapshot of both the source and the target
environment and compares the two. If the two snapshots are the same, the test passes, if they
differ, the test fails.

N !" S D O M Cross Environment Test
cpPS

Test Preparation Test Runtime

]
]
]
:
* ‘ napshots
’ Compare two snapshots l equal?
]
1
]
]
]
]
1
]
]
1
]
]

Set Vizzes to compare on Source
and Target Tableau Server/Sites

1
1
]
]
]
]
1
]
1
1
1
] 1
1 1
1 1
1]
1 1
1)
] 1
] 1
' Fix and Resolve :
) Differences 1
] 1
1 1
[] 1
(] 1
1]
1]
1 1

L3

Get Actual Viz Get Actual Viz
from Server/Site 1 from Server/Site 2

Ii»

Collecting viz metadata, No - Failed

components, data, layout, etc.

Flow diagram of Cross-Environment Testing

CROSS-ENVIRONMENT TESTING

Similar to Regression testing, in Cross-Environment testing users can also select \\

what to include in the scope of the Cross-Environment test, i.e. worksheets, data
columns, the actual data, the layout, as well as filter and parameter names, data
types, and values.

e 2 Test Name 2 Croma emvinnment Deacription. S PO TR
:> Crossenv Test m
—
1 Tasks © fex
Task List Task Properties © Tma Ordrw Comumertato
Cross Emvironment Test Cb
H Bask v) v v
b Cross Environmert; Test &
Task Nama® Croma-Ervironmest Test
Source Tableau Viz URL® {{TABLEALI_URL) }/U{{TABLEAL_STTE) M vieww/ Erkicationandinnovation/ Deshtoarn m
| b o the w | -~
Refresh data on open
Use formatted values
abke o use forma wiorkabor w i be e :
Check worksheets exist
Check columns - Summary export

Check columne - Full export

m @ Clear Commole [Sy M Win Scheduler | A Crontab O Jenkins
WEm

e]
| croserronment S R

O
'@

Cross-Environment testing task properties

PERFORMANCE TESTING O

Performance testing in Wiiisdom Ops drives load to your Tableau server and assesses
response times based on SLA requirements. You can work with multiple concurrent users
and dashboards. Users can define SLA's (Service Level Agreements) with multiple goals, such
as Performance Goal, Availability Goal, or Apdex Score.

Apex (Application Performance Index) score is commonly used for welb applications. Users
can define a performance and an availability goal. Apdex is a combination of availability
and performance metrics, where fast and error-free responses increase the score, and long
responses and errors reduce the score. It is similar to Service Level Agreements (SLAs) but
more tolerant of rare occasional delays. Apdex ranges from O to 1, where 1 means all users are
happy, and O means all users are frustrated.

In Performance testing, users can include up to 100 concurrent clients to test the Performance
of the Tableau Server and they can determine a pool of Tableau views to include in the test
case

Performance test run reports are illustrative and easy to understand, featuring an overview of
response times, availability score, and samples logs.

APDEN Pk Tim Aielptilny Satiion Log

Rospanss Timas sear Tinae

0 (0.00%) 26 (11.11%) 208 (88.89%)
Fiagpoiag T Cioal (sl ::l Todnraide Nismporma Tena (ma) Liag b E Elaflireg Ly msidos Chpsifiing Wi o S
o+ i I ot Cieen Vi BN e Py P).
° . . - : 2s . L.i iy L 1

] @
1 "
1:3 - :*'-J [y &, B8 8 :K :gn

o0 et FHaB11 pm 1531 pr P41 prm A m TSHA F:8:01 pm T M1 Prern

o Performance Test Report - Response Times

COMPATIBILITY

Tableau server connection details can be set up in context variables. Users can set-up multiple
contexts, enabling them to run tests on multiple sites or servers, changing only the Active Context
-- there is no need to refactor test cases.

With changing context, continuous deployment of Tableau dashboards can also be implemented.

IMPORTING TABLEAU DASHBOARDS INTO WIIISDOM OPS

Users can also import Tableau files, including twb and twhbx workbooks and data sources
iInto Wilisdom Ops. This way, dashboards can be kept together with the respective test
cases, promoting test-driven development. Using this approach, users can constantly
monitor their dashboards to make sure existing functionality is preserved, even when
new a functionality or features are added.

COMPATIBILITY WITH ENTERPRISE SOLUTIONS

Wiiisdom Ops is also compatible with Single Sign-On systems and other custom login
implementations.

RUNNING TEST CASES

TEST RUNS

The tests are run by the cormmand-line interface, and Tableau Server interactions are executed by
a web driver.

Test runs can be executed from the Ul one by one or automated in Windows Task Scheduler or
Crontab. Users can also integrate Wiiisdom Ops with a Cl tool of your choice, such as Jenkins,
Bamboo, or TeamCity.

Wiiisdom Ops projects use a Wiiisdom Ojps Project Standard Directory Layout that only
contains text files (JSON files mostly), which enables easy collaboration between develo-
pers and version control.

o Features Business Explore Marketplace Pricing This repository Signin Sign up
Ll Kinesis-Cl / education-and-innovation ©Wstch 2 #&Star 3 YFork 2
<) Code Issues 0 Pull requests 0 Projects 0 Insights

Kinesis Cl for Tableau - Sample Project http://kinesis-ci.com/

tableau
(P 43 commits I 1 branch > 0 releases 4L 2 contributors
Branch: master~ ! | (L8 Clone or download ~
. koszti Merge pull request 7 from Kinesis-Cljupdate-test-types ~ Latast commit 3933a% on 14 Jan
[context Amended context variables a year ago
. src Initial commit a year ago
B test Merge pull request £7 from Kinesis-Cl/update-test-types 3 months ago
=} ,gitignore Initial commit @ year ago
E Jenkinsfile Fixed typo in cli long option a year ago
Jenkinsfile-HipChat Fixed typo in cii long option a year ago
README.md Styling README.md 3 months ago
=| project.json changed Publish_and_refresh_extract task to reflect a task where data... @ year ago
screenshot.png Initial commit @ year ago

Sample Wiiisdom Ops Project published to GitHub

O
O)

RUNNING TEST CASES

CONTINUOUS INTEGRATION

Continuous Integration (Cl) is a development practice that requires developers to integrate code
into a shared repository several times a day. Each check-in is then verified by an automated build,
allowing teams to detect problems immediately and locate them more easily.

To run tests automatically on a Continuous Integration Server, i.e. Jenkins, TeamCity, etc., users
need to install the Wiiisdom Ops Command Line Interface to the server where their Cl server is
running and integrate it with the Cl tool of choice.

L ® £ Tevleau Deshbosrd [enking] x Katherne G
. ¥ @ jenkins.local: 808 1 job/ TableauX200ashboard Yad Q0 - 1
® Jenkins ~ o e mmt
& Back o Dashboard = =
- Pipeline Tableau Dashboard
. Status
' T
k_) J Now S Pesert Changsa
© Deite Proe
£} Configure Stage View
L Moy
Buita / Archive Test
Ful scM Tabiioa Test Dopicy UAT Dopioy Prod
6 Checkout ;;"':: [Winesis) EI"::: (Wirvesis) Arerw inveshs)
4 4o 1. s
Bulld History treng - ot S— - -
o -
' Q 45 imin 215 3min 36s 3s 32s 21ms 38s
L “ nu P2,
N o
on . @ ds imin 215 3min 215 2s 32s 33ms
gn = o Success
o
I8 i £ BSS o laiure - E 3s Tmin 218 268
- T B ~
55 1min 218 3min 48s 3s 32s 24ms 265

Example Jenkins Pipeline with stages running Wiiisdom Ops tests

DEPLOYMENT O

Wiiisdom Ops is shipped in bundle packages including the following two software com-
ponents:

Wiiisdom Ops Designer:
User Interface for building and running test cases in an easy-to-use environment.

Command Line Interface (CLI):
Used for running tests, enables automated test runs and continuous integration.

The bundle packages contain self-executable files and no further installation is required.
Wiiisdom Ops Designer is installed locally at the Bl developers’ computer and Wilisdom
Ops CLI may be deployed on a server to run tests automatically.

Operating Systems
Windows

MacOS

Linux (CLI Only)

\\
N
ABOUT WIISDOM OPS N\

Testing should be an integral part of our Bl development process to deliver reliable reports in
a cost-effective manner. Wiiisdom Ops is a unique tool designed for Tableau that provides a
sophisticated and comprehensive test environment to cover all your Bl testing needs.

Learn More About Wiiisdom Ops

&>

W!HISDOM

Making Trusted Decisions, Together

000

https://wiiisdom.com

O
O)

https://wiiisdom.com
https://wiiisdom.com/wiiisdom-ops/
https://www.facebook.com/wiiisdomsoftware
https://www.linkedin.com/company/wiiisdomsoftware/mycompany/
https://twitter.com/_Wiiisdom

